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Abstract—Placenta localization from obstetric 2-D ultrasound (US) imaging is unattainable for many pregnant
women in low-income countries because of a severe shortage of trained sonographers. To address this problem,
we present a method to automatically detect low-lying placenta or placenta previa from 2-D US imaging. Two-
dimensional US data from 280 pregnant women were collected in Ethiopia using a standardized acquisition pro-
tocol and low-cost equipment. The detection method consists of two parts. First, 2-D US segmentation of the pla-
centa is performed using a deep learning model with a U-Net architecture. Second, the segmentation is used to
classify each placenta as either normal or a class including both low-lying placenta and placenta previa. The seg-
mentation model was trained and tested on 6574 2-D US images, achieving a median test Dice coefficient of 0.84
(interquartile range = 0.23). The classifier achieved a sensitivity of 81% and a specificity of 82% on a holdout test
set of 148 cases. Additionally, the model was found to segment in real time (19 § 2 ms per 2-D US image) using a
smartphone paired with a low-cost 2-D US device. This work illustrates the feasibility of using automated pla-
centa localization in a resource-limited setting. (E-mail: Martijn.sch@gmail.com) © 2021 The Author(s).
Published by Elsevier Inc. on behalf of World Federation for Ultrasound in Medicine & Biology. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

Placenta previa is a maternal risk factor characterized by

the placenta either partially or completely covering the

endocervical os (Silver 2015). When the placenta does

not cover the endocervical os but is located within a dis-

tance of 2 cm, it is defined as a low-lying placenta. Pla-

centa previa and, to a lesser extent, low-lying placenta are

associated with severe obstetric risks caused by blood loss

in the third trimester and during delivery (Fan et al. 2017;

Jansen et al. 2019). Obstetric ultrasound imaging is com-

monly used to detect placental position. Unfortunately,
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l Imaging, Radboud University Medical Center, Geert Groote-
uid 10 6500 HB Nijmegen, The Netherlands. E-mail: Martijn.
mail.com

663
resource-limited countries often lack financial resources

and trained sonographers to perform ultrasound examina-

tions in rural areas (LaGrone et al. 2012).

Van den Heuvel (2019) proposed combining the

usage of low-cost ultrasound equipment with software

for automatic detection of maternal risk factors. Health

care workers can be trained within a few hours to

acquire ultrasound data with an obstetric sweep proto-

col (DeStigter et al. 2011). The acquired ultrasound

data can be processed by a machine learning algo-

rithm on a smartphone to automatically detect mater-

nal risk factors. This system could be used to enable

the referral of women with high-risk pregnancies to a

hospital for safe delivery. In their work, Van den

Heuvel et al. (2019) found that it is possible to auto-

matically estimate gestational age, determine fetal
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presentation and detect twin pregnancies using the

obstetric sweep protocol.

In the literature, there is relatively little published

work on automatic placenta localization. There is a sin-

gle study on automatic ultrasound assessment of placenta

previa (Saavedra et al. 2020) in which a localization

algorithm for identifying potential cases of placenta pre-

via was proposed. However, the data set included only

10 study participants. Qi et al. (2017) reported that

weakly supervised learning can be used to automatically

localize anatomical structures in placenta ultrasound

images. Several other studies have been conducted on

automatic placental segmentation from ultrasound imag-

ing. Looney et al. (2018) and Yang et al. (2019)

attempted volumetric (3-D) placental segmentation,

whereas Hu et al. (2019) considered 2-D placental seg-

mentation. Hu et al. (2019) achieved a mean Dice score

of 0.92 with a U-Net trained on 1364 2-D images

acquired from 247 cases. The gestational age of these

cases ranged from 8 to 34 wk.

In this study, we present a method that automatically

detects low-lying placenta or placenta previa from ultra-

sound imaging with the use of an obstetric sweep protocol.

This detection method was optimized to run on a smart-

phone and produce real-time segmentation to enable usage

in remote areas. The main contribution of this work is to

illustrate the feasibility of using the proposed automatic

placenta localization method in a resource-limited setting.
METHODS

Our placenta localization method consists of two

phases. In the first phase, a deep learning model with a

U-Net architecture (Ronneberger et al. 2015) segments

the placenta on 2-D ultrasound images. In the second

phase, the placenta segmentation is used to classify cases

as either normal placenta or low-lying placenta. For clas-

sification, placenta previa and low-lying placenta are

grouped in the low-lying placenta class. To evaluate the

feasibility of clinical application, the loading and infer-

ence times of the segmentation algorithm are examined

on a smartphone.
Fig. 1. Visualization of the obstetric sweep protocol. The num-
bers indicate the order in which the sweeps are performed.

Reprinted, with permission, from Van den Heuvel (2019).
Data acquisition

The data used in this study were acquired at St.

Luke's Catholic Hospital, Wolisso, Ethiopia. As Ethiopia

is a low-income country with the fourth-highest maternal

mortality rate in 2017 (World Health Organization

et al. 2019), the data were representative of the target

population. A local gynecologist used the MicrUs Ext-

1H with the C5-2R60S-3 transducer (Telemed, Vilnius,

Lithuania) to obtain ultrasound data on 280 pregnant

women. The average gestational age of these woman

was 31 wk (range: 18�40 wk). The collection of the
data used in this study was approved by the local ethics

committee (ID Ref. No. BEFO/AHBTHQO/4004/1-20).

All participants signed a written informed consent. For

the image settings on the MicrUs Ext-1H, we used a gain

of 81%, scanning depth of 15 cm, center frequency of

4 MHz, frame averaging of 4 and speckle reduction level

4 pureview; the Image Enhancement was set to method

3. The ultrasound data were acquired with the use of the

obstetric sweep protocol (DeStigter et al. 2011), which

consists of three transverse sweeps followed by three

longitudinal sweeps over the abdomen (see Fig. 1). Dur-

ing a sweep, 20 2-D ultrasound images were acquired

per second. The gynecologist was asked to perform each

sweep in approximately 5 s, which corresponds to

roughly 100 2-D ultrasound images per sweep and accu-

mulates to 600 2-D images per woman. These images

were exported in DICOM format using the Echo Wave

II software (Telemed, Vilnius, Lithuania). For clarity,

the 2-D ultrasound images will be referred to as frames

in this work.

A medical expert (C.N.) annotated (manually seg-

mented) the placenta on frame level using ITK-SNAP

3.6.0 (Yushkevich et al. 2016). Figure 2 illustrates an

example of a frame with its corresponding placenta

annotation. Because of time constraints, it was not possi-

ble to annotate the placenta for all 280 cases. Therefore,

the data were randomly split into two sets. Set 1 con-

sisted of 132 annotated cases and set 2 consisted of the

remaining 148 cases. To reduce the duration of the anno-

tation process, the expert annotated only one in every

five frames that contains placenta. As only one in every

five frames containing placenta is annotated, all frames

within a range of five frames from an annotated frame

are considered positive frames. The other frames are

considered negative frames, that is, frames that do not

contain placenta. Set 1 consists of 36,504 positive

frames, 65,305 negative frames and 6574 annotated



Fig. 2. Example of an ultrasound frame (a) and the same frame with the placenta in yellow (b). This frame originates
from sweep 1, as illustrated in Figure 1. The images in this figure were created using the Python package Matplotlib

(Hunter 2007).
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frames. Figure 3 is a 3-D visualization of all annotated

frames for one pregnant woman.

The expert also provided case labels for all 132

cases in set 1. The case labels are low-lying placenta

(includes placenta previa), normal placenta or not assess-

able. A case was labeled not assessable when the quality

of data was insufficient to determine the placenta loca-

tion. The expert did not have any additional information

and created the case labels based solely on the ultrasound

data. Two observers (C.N. and J.v.D.) independently

labeled all cases in set 2. The final ground truth case

labels for set 2 were determined via a consensus meeting

in which the two observers discussed the cases on which

they initially did not agree. Table 1 outlines the class dis-

tribution for sets 1 and 2.
Phase 1: Placenta segmentation

Set 1 contains 6574 annotated frames. Two pre-

processing operations were performed on these frames.

First, the frames were masked and cropped to remove

surrounding markers such as the ultrasound acquisition

settings, the lookup table, and the ruler. Afterward, all
Fig. 3. Three-dimensional visualization of the placenta annota
annotations, and the blocks of dark background indicate the si
the numbers in Figure 1. The spaces between the blocks repre

the abdomen. These visualizations were made in MeVisLa
pixel values were divided by 255, which scaled the val-

ues from 0 to 255 to floating point values ranging from 0

to 1.

A fully convolutional network with a 2-D U-Net

architecture inspired by Ronneberger et al. (2015) was

implemented for segmentation of the placenta. To opti-

mize the performance and computational efficiency of

the U-Net, four experiments were performed. First, the

effect of scaling the size of input images and the number

of model parameters was examined. Second, different

padding strategies were evaluated. Third, an experiment

was carried out to study the effect of batch size on per-

formance. Lastly, negative frames were added to the

training data to improve overall segmentation perfor-

mance on a case level.
Scaling. In the first optimization experiment, the

effect of scaling with respect to the size of the input

frames and the model parameters was examined. The

input frames were downsampled to reduce computation

time and memory cost. Downsampling also avoids the

need for a deeper U-Net, as it effectively increases the
tions for a single case. The yellow surfaces represent the
x sweeps. The numbering of these sweeps correspond to
sent the window in which the transducer was lifted from
b 3.2 (MeVis Medical Solutions, Bremen, Germany).



Table 1. Class distribution of the placenta case labels for both
sets 1 and 2

Set 1 Set 2

Normal placenta 101 126
Low-lying placenta 27 16
Not assessable 4 6
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receptive field of the convolutional kernels. The frames

were downsampled by selecting pixels with a step size

equal to the downsampling factor. Figure 4 visualizes

the effect of different downsampling factors.

In a U-Net, the number of feature channels is dou-

bled after each pooling layer and halved after each

upsampling layer. Therefore, the number of model

parameters can be derived from the number of output

channels of the first convolutional layer (referred to in

this work as model channels). The U-Net proposed by

Ronneberger et al. (2015) has 64 model channels.

Decreasing the number of model channels and thereby

the model's parameters reduces computation time and

memory cost. In this optimization experiment, all combi-

nations of downsampling factors 1, 2, 4, 6 and 8 and

model channels 8, 16, 32 and 64 were examined. The

numbers of model parameters corresponding to these

model channels are listed in Table 2. The batch sizes

were selected as the largest power of 2 that could fit on

the graphics processing unit (GPU) memory and, there-

fore, maximized the GPU capacity.

Padded convolutions. The U-Net introduced by

Ronneberger et al. (2015) contains convolutional layers

with no padding, referred to as unpadded convolutions.

The unpadded convolutions decrease the size of the fea-

ture maps. Consequently, the output of the model is

smaller than the input. To ensure that the output segmen-

tation covers the entire frame, the input has to be heavily

padded. Padded convolutions, sometimes referred to as

same-padding convolutions, indicate that padding is

added implicitly at layer level so that the feature map size

is not decreased by a convolutional layer. As a result, the

input and output of a model with padded convolutions

have the same size, and heavy padding of the input can be

avoided. This decrease in input size reduces the memory

cost and the computation time of the algorithm.

Table 3 outlines the in- and output sizes for padded

and unpadded convolutions for different downsampling

factors. The output size of the unpadded convolutions

and in- and output sizes of the padded convolutions are

slightly larger than the frame size. This is to ensure that

no padding is needed at the max-pooling layers. Both the

ultrasound images and the placenta segmentations were

zero-padded to their desired size. For comparison, the
scaling experiment was repeated with the padded mod-

els, and these were trained with the same batch sizes as

the unpadded models.

Batch size. The reduction in memory cost caused

by the padded convolutions resulted in the possibility of

selecting large batch sizes, especially for efficient mod-

els with a high downsampling factor and a small number

of model channels. However, the models that were

trained with these large batch sizes would either not con-

verge or exhibited poor performance. Instead of maxi-

mizing GPU capacity, which resulted in large batch

sizes, we evaluated batch sizes 4, 8, 16, 32 and 64 and

selected the best performing batch size per model.

Negative frames. The models in the scaling, pad-

ding and batch size experiments were trained on the

6574 annotated positive frames. In the negative frame

experiment, we aimed to improve generalization by

training models on these annotated frames plus different

percentages of randomly sampled negative frames. At

the start of every epoch, these negative frames were

added to the training data by randomly sampling from

all negatives in the data set. The percentage of negative

frames in the training data is referred to as the negative

frame ratio. Experiments were performed with negative

frame ratios of 0.0, 0.2, 0.4, 0.6 and 0.64. The latter

value is equal to the negative frame ratio in set 1 and

was chosen to examine a model that was trained with

data representative of the original distribution.

Training and evaluation. The segmentation

experiments were fivefold cross-validated to evaluate

the generalization on all 132 cases in set 1. Three folds

were used as training data, one as validation data and

one as test data corresponding to a 60% train, 20% vali-

dation and 20% test split. During training of the segmen-

tation model, the following parameters were kept

constant for all experiments. The binary cross-entropy

function was used as the loss function because this is a

two-class segmentation problem. The sigmoid was used

as the final activation function of the model. The output

values of the model were binarized with a threshold at

0.5. The model weights were He-normal initialized

(He et al. 2015). Adam (Kingma and Ba 2014) was used

as the optimizer with an initial learning rate of 0.001.

Training was stopped when there was no improvement

in the validation Dice for 50 epochs. Finally, the same

seed was set for all experiments to reduce variation and

ensure reproducibility of the results. The models were

implemented in Keras with Tensorflow 1.15.0

(Abadi et al. 2016) as the back end, and they were

trained on a GeForce GTX 1080 Ti (Nvidia Corp., Santa

Clara, CA, USA) graphics card.



Fig. 4. Visualization of different downsampling factors. The downsampling factors with the corresponding dimensions
from (a) to (d) are no downsampling (562 £ 744), downsampling 2 (281 £ 372), downsampling 4 (141 £ 186) and

downsampling 8 (71 £ 93).

Table 3. Frame size and resulting input and output sizes of the
2-D U-Net for different DFs*
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The Dice score (Dice 1945; Sørensen 1948) was

used as the evaluation metric and is defined as

Dice ¼ 2jX \ Y j
jX j þ jY j ð1Þ

For binary segmentation, X represents the segmen-

tation, and Y the annotation or vice versa. The perfor-

mance on a set of frames was represented by the median

Dice and the interquartile range as the Dice scores were

non-normally distributed according to the Shapiro-Wilk
Table 2. Number of model parameters for a four-level deep
2-D U-Net for different model channels

Model channel* Parameter

8 485,673
16 1,940,817
32 7,759,521
64 31,030,593

* Number of output channels of the first convolutional layer.
test (p value < 0.05) (Shapiro and Wilk 1965). After

training, the models were finalized by loading the

weights corresponding to the epoch with the highest vali-

dation Dice. The Dice score is not suited as a perfor-

mance metric for negative frames as the numerator in

eqn (1) for a negative frame is zero, and, if the model

correctly segments no placenta, the denominator is zero

as well. In other words, the Dice score of a negative
DF Frame size UC input UC output PC input/output

1 562 £ 744 764 £ 956 580 £ 772 576 £ 752
2 281 £ 372 476 £ 572 292 £ 388 288 £ 384
4 141 £ 186 348 £ 316 164 £ 196 144 £ 192
6 94 £ 124 284 £ 316 100 £ 132 96 £ 128
8 71 £ 93 284 £ 284 100 £ 100 80 £ 96

DF = downsampling factor; UC = unpadded convolution;
PC = padded convolution.
* The input and output sizes in the third and fourth columns corre-

spond to a U-Net with UCs, and the input and output sizes in the fifth
column correspond to a U-Net with PCs.
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frame will either be zero or undefined. To evaluate the

performance on negative frames we introduce a quantity

called false positives on negative frames (FPN). This

quantity is calculated by taking the sum of the placenta

predicted pixels in a negative frame and dividing this by

the number of pixels in the frame. Finally, the mean

FPN is taken for all negative frames in the data.
Phase 2: Placenta classification

The best performing segmentation model was used

to segment all frames in a case to obtain case segmenta-

tions. The case segmentations were subsequently used as

input for the placenta classifier. To perform cross-valida-

tion, five instances of the best performing segmentation

model were trained in phase 1, each with a different

combination of train, validation and test folds. Every

case in set 1 was segmented by the instance for which

that case belonged to the test data. For set 2, the mean

prediction of the five cross-validation instances was used

to create case segmentations. Set 1 was used to train the

classifier, and set 2 was used as a holdout test set.

The cases that were labeled not assessable were

excluded from both data sets, resulting in a training set

of 128 cases and a test set of 142 cases.

Because of the small number of cases, a machine

learning solution was not feasible. Instead, a case was

classified based on its nth percentile of volume. In this

context, the term nth percentile of volume was used to

indicate the height below which n percent of the placenta
Fig. 5. Placenta volume distribution for a normal placenta (a) a
centile values. Placenta volume distribution is determined by
sweeps and is normalized between 0 and 1. The range from 0 to

the breast b
volume resides. A case was classified as low-lying pla-

centa if its nth percentile of volume was lower than a

chosen threshold. This threshold was selected to maxi-

mize the sum of the sensitivity and specificity on set 1.

With this threshold, the classifier was evaluated on set 2.

The nth percentile of volume was calculated from

the first three longitudinal sweeps of the acquisition pro-

tocol. The number of placenta pixels in the frame repre-

sents the placenta volume of the frame. The total

placenta volume of a case was considered to be the sum

of the placenta volumes for the frames in the first three

sweeps. The nth percentile is a value between 0 and 1.

All frame indices in the sweeps were normalized

between 0 and 1, so that the placenta volume below the

nth percentile in the three sweeps combined summed up

to n percent of the total placenta volume. The classifier

was evaluated for the percentiles 1, 2.5, 5, 10, 25 and 50.

As an example, Figure 5 illustrates the distribution of the

placenta volume for both a normal placenta and a low-

lying placenta and highlights their percentile values.
Smartphone implementation

We evaluated the loading and inference time of the

best segmentation model on a OnePlus 7T (OnePlus

Technology Co. Ltd., Shenzhen, China) smartphone

with a Qualcomm Snapdragon 855 Plus processor that

ran on Android, version 10. The loading and inference

time were evaluated over 10 runs and are represented by

the mean and standard deviation. The segmentation
nd a low-lying placenta (b) with their corresponding per-
the placenta segmentation of the first three transverse
1 is a representation of the space from the pubic bone to
one.



Fig. 6. Validation Dice scores for the scaling experiment for the models with unpadded and padded convolutions.
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model was converted to Tensorflow Lite 1.13.1 to load it

on an Android-based smartphone.
RESULTS

Phase 1: Placenta segmentation

Scaling. The results of the scaling experiment

for both padded and unpadded models are illustrated

in Figure 6. With the exception of no downsampling,

all models perform within a Dice score range of 0.78

to 0.86. No downsampling for the unpadded models

had Dice scores of 0.74 and 0.35 for 32 and 64 model

channels, respectively. For the padded models, no

downsampling scored a Dice of 0.64 for 64 model

channels.
Fig. 7. Scaling experiment with padded models and batch siz
batch sizes are give
Padded convolutions. Figure 6 illustrates the

effect of the two different padding strategies. The differ-

ence in segmentation performance between the padded

and unpadded models is negligible for downsampling

factors 4, 6 and 8, while the computation time was sig-

nificantly reduced.
Batch size. The results in Figure 7 indicate that

selecting the optimal batch size significantly reduces the

difference in segmentation performance between the

considered models. The difference between the worst

and best performing models in Figure 7 is 0.020 Dice.

The best performing model achieved a Dice score of

0.855 § 0.162. The optimal batch sizes are outlined in

Table 4 in comparison to the batch sizes used for the
es, which were optimized per model. The corresponding
n in Table 4.



Table 4. The two batch size strategies for the scaling
experiment*

Strategy Modelchannels Downsampling factor

1 2 4 6 8

Max GPU 8 16 64 128 256 256
16 8 32 64 128 128
32 4 16 32 64 64
64 2 8 16 32 32

Optimal 8 — — 4 4 4
16 — — 8 4 4
32 — — 16 8 16
64 — — 32 8 16

GPU = graphics processing unit.
The maximum GPU batch sizes maximized the GPU memory capac-

ity for the unpadded models and were used for both the padded and
unpadded models in Figure 6. Under the optimal strategy are the batch
sizes that were optimized for the padded models and used in Figure 7.
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results in Figure 6. No downsampling and downsampling

2 were excluded from the batch size experiment as they

were inefficient and did not outperform the higher down-

sampling factors.
Negative frames. The effect of adding negatives

to the training data was evaluated with the best perform-

ing model, which had the following hyperparameters:

downsampling factor 6, 32 model channels, padded con-

volutions and batch size 8. Figure 8 illustrates the effect

of the negative frame ratio on segmentation perfor-

mance. The results on the test set are also included in the

figure as this was the last optimization step. The lowest

FPN was achieved with a negative frame ratio of 0.6

with a reduction of 2.1% in both validation and test Dice

scores. Figure 9 is a visualization of the effect of training

on a data set with negative frames for a case segmenta-

tion. A negative frame ratio of zero resulted in many

incorrect placenta predictions. These negative
Fig. 8. Segmentation performance in Dice scores (left) and FPN
tive frame ratios. FPN = false po
predictions were greatly reduced for the model trained

with a negative frame ratio of 0.6. Because of its low

FPN, the model with a negative frame ratio of 0.6 was

considered the best and final model. It achieved a Dice

score on the test set of 0.84 § 0.23.
Phase 2: Placenta classification

The results of the placenta classification on the

train set are visualized in the receiver operating charac-

teristic (ROC) curves in Figure 10. The highest area

under the ROC curve (AUC) was achieved by p25

(25th percentile). The figure also indicates the optimal

threshold for each classifier. The values for these

thresholds with their corresponding sensitivity and

specificity values are outlined in Table 5 alongside the

results on the test set. Notably, p1 achieved high train

and test sensitivities of 0.96 and 0.94, respectively,

while scoring lower on specificity. p2.5 reached the

highest accuracy of 0.82 and scored high on both sensi-

tivity and specificity on the test set.
Smartphone implementation

The smartphone loaded the best model in 371 §
25 ms, and the time it took to segment and output a bit-

map for a single frame was 19 § 2 ms.
DISCUSSION

In this study, we illustrated the feasibility of automatic

detection of low-lying placenta or placenta previa in a

resource-limited setting. For this task, a deep learning algo-

rithm was introduced that can be deployed on a smartphone

and was trained on ultrasound data that were acquired with

a standardized acquisition protocol. The algorithm con-

sisted of two parts: placenta segmentation and placenta

classification. The best performing placenta segmentation
(right) of the best performing model for different nega-
sitives on negative frames.



Fig. 9. Three-dimensional placenta visualization of the effect of different negative frame ratios for a single case. Here,
(a) is the placenta annotation, and (b) and (c) are model predictions corresponding to negative frame ratios of 0.0 and

0.6, respectively.
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model obtained a median Dice score of 0.84 on the test set.

The placenta classifier achieved a sensitivity of 81% and a

specificity of 82% on a holdout test set.
Fig. 10. Receiver operating characteristic curves with their opt
centiles. The optimal threshold was defined as the threshold

AUC = area under the receiver op
Phase 1: Placenta segmentation

Figure 6 illustrates that the performance of the no-

downsampling models drops significantly for larger
imal thresholds for the placenta classifier at different per-
that maximizes the sum of sensitivity and specificity.
erating characteristic curve.



Table 5. Classifier performance on the train and test sets for different percentiles and their optimal thresholds

Percentile Threshold Train set (set 1) Test set (set 2)

Sensitivity Specificity Sensitivity Specificity

1 0.11 0.96 0.71 0.94 0.74
2.5 0.15 0.89 0.82 0.81 0.82
5 0.21 0.89 0.81 0.81 0.8
10 0.27 0.93 0.80 0.75 0.74
25 0.34 0.89 0.86 0.63 0.79
50 0.47 0.78 0.85 0.63 0.79
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model channels. This indicates that the combination of

large input data and a large number of model parameters

does not perform well on this data set. The training

curves revealed that these models did not always con-

verge. The no-downsampling models were also very

inefficient and therefore excluded from further experi-

ments alongside downsampling 2 models. As the differ-

ence in the remaining downsampling factors was

negligible between the two graphs in Figure 6, the pad-

ded models are favored because of the increase in

computational efficiency. Figure 7 illustrates that the

performance for the different models in the scaling

experiment can be equalized by selecting the optimal

batch size. This indicates that the results in Figure 6

were influenced by the varying batch sizes shown in the

max GPU section of Table 4. Table 4 indicates that the

small batch sizes seem to perform better for downsam-

pling factors 4, 6 and 8. This also explains the increase

in performance for these downsampling factors at higher

model channels in Figure 6, where the maximum GPU

capacity batch sizes were used.

Figure 8 illustrates that the validation and test results

follow the same pattern and are almost equal. This indi-

cates that the model generalizes well and that no overfit-

ting occurred on the validation data. Before adding

negative frames, the segmentation model would show

unexpected artifacts, such as predicting placenta when the

transducer made no contact with the abdomen. This is vis-

ible in Figure 9b, which illustrates that the model predicts

placenta between the sweeps. Training with only frames

with placenta present created the bias that every frame

must contain placenta. These unwanted artifacts were

completely removed at a negative frame ratio of 0.6.

In this study, only the best performing model was

used to create the case segmentations for the classifier.

However, Figure 7 illustrates that the differences in Dice

between the best performing model and the other models

are relatively small. A more efficient model might result

in similar classification performance while achieving

faster inference time on a smartphone.

In comparison to other literature, Hu et al. (2019)

achieved a mean Dice of 0.92 on 1364 2-D images

acquired from 247 cases. However, their data was
acquired with high-end ultrasound equipment, resulting

in arguably better data quality. Furthermore, we trained

the final models on negative frames, which greatly

reduced false positives but led to a decrease in Dice

score. Lastly, the segmentation model in this work was

largely optimized for efficiency over performance, so

that it could be deployed on a smartphone in a clinical

setting. In contrast to Hu et al. (2019), our aim was not

to achieve the best segmentation Dice score but to create

an efficient method for automatic placenta localization.

Phase 2: Placenta classification

For classification of the placenta, low-lying placenta

and placenta previa were grouped. This choice was made

with regard to the data quality. The acquisition protocol

that was used did not always show the location of the cer-

vix, which made it impossible to make a distinction

between a low-lying placenta and placenta previa. How-

ever, because a low-lying placenta can also lead to com-

plications, the system would still identify potentially

high-risk pregnancies without this distinction.

A machine learning approach was avoided for clas-

sification because of the small number of cases in the

data set. The percentile classifier achieved a sensitivity

and a specificity greater than 0.8 on the test set for p2.5

and p5 with the limited amount of data. The p1 classifier

achieved a higher test sensitivity of 0.94; however, note

that the small number of positive test cases makes this

metric volatile.

The percentile-based classifier presented in this

study did not use data from the longitudinal sweeps

(sweeps 4�6 in Fig. 1). These data could carry important

information to improve classification of the placenta.

Implementing a classifier that uses the data from the lon-

gitudinal sweeps could be promising for future work.

Smartphone implementation

For the algorithm to be applicable in a clinical set-

ting, the computation time should be within a reasonable

time frame. With the use of MicrUs Pro C60S (Telemed,

Vilnius, Lithuania), ultrasound data can be acquired and

transferred to a smartphone at 20 frames/s. The time to

process and segment these images on a smartphone with
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the presented segmentation model is 19 ms. In other

words, the smartphone can segment more than 50 fram-

es/s. As a result, it can produce real-time segmentation.

After the acquisition protocol, the placenta classification

is done instantly as it is a relatively simple computation.

This demonstrates the feasibility of the algorithm in a

clinical setting.

Clinical implication

Van den Heuvel (2019) found that it is possible to

automatically estimate gestational age, determine fetal

presentation and detect twin pregnancies using the same

acquisition protocol. Combining these algorithms with

the algorithm introduced in this study would result in a

system that can automatically detect multiple maternal

risk factors. This detection system coupled with trained

health care workers can potentially enable affordable

widespread ultrasound screening in resource-limited

countries. It can assist in identifying high-risk pregnan-

cies and refer them to the hospital for a conventional

ultrasound examination by an experienced sonographer.

In a resource-limited setting, it is important to consider

patient management and the possibility for medical care

after detection of maternal risk factors. This goes beyond

the scope of this study; however, detection could be the

first step in improving obstetric care in resource-limited

countries.

Study limitations

The number of cases, especially low-lying cases,

was relatively small for placenta classification. As a

result, the classification metrics become volatile to minor

changes in the threshold. Additional cases with case

labels would be required to further improve and robustly

evaluate the percentile classifier. Additional data could

also open up the possibility of using a machine learning

classifier. Another limitation of this study is the inconsis-

tency in the scanned area during the acquisition protocol.

Because the protocol consists of freehand sweeps, the

abdominal area that was scanned differed per case,

which slightly skewed the placenta volume distribution.

Ideally, there would be a reference point (e.g., the cer-

vix) for all cases to resolve this issue. This would be

challenging given that this reference point must also be

automatically detected.

CONCLUSIONS

We developed the first algorithm that automatically

detects low-lying placenta or placenta previa from ultra-

sound data. The data set that was used in this study was

acquired in Ethiopia using a standardized acquisition

protocol and low-cost equipment. The algorithm con-

sisted of two phases: placenta segmentation and placenta
classification. The segmentation model was optimized

for efficiency and performance and can produce real-

time frame segmentation on a smartphone. The differ-

ence in performance between the best performing and

more efficient models could be heavily reduced by

selecting the optimal batch size. The best performing

model achieved a median Dice score of 0.84 (interquar-

tile range = 0.23) on the test set. The classifier achieved

a sensitivity of 81% and a specificity of 82% on a hold-

out test set consisting of 148 cases. We found that the

segmentation model was able to perform real-time seg-

mentation on a smartphone, which further illustrates the

feasibility of using the algorithm in a resource-limited

setting.
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